For a graph $H$, its homomorphism density in graphs naturally extends to the space of two-variable symmetric functions $W$ in $L^p$, $p\geq e(H)$, denoted by $t_H(W)$. One may then define corresponding functionals $\|W\|_{H}:=|t_H(W)|^{1/e(H)}$ and $\|W\|_{r(H)}:=t_H(|W|)^{1/e(H)}$ and say that $H$ is (semi-)norming if $\|.\|_{H}$ is a (semi-)norm and that $H$ is weakly norming if $\|.\|_{r(H)}$ is a norm.

We obtain some results that contribute to the theory of (weakly) norming graphs. Firstly, we show that ‘twisted’ blow-ups of cycles, which include $K_{5,5}\setminus C_{10}$ and $C_6\square K_2$, are not weakly norming. This answers two questions of Hatami, who asked whether the two graphs are weakly norming. Secondly, we prove that $\|.\|_{r(H)}$ is not uniformly convex nor uniformly smooth, provided that $H$ is weakly norming. This answers another question of Hatami, who estimated the modulus of convexity and smoothness of $\|.\|_{H}$. We also prove that every graph $H$ without isolated vertices is (weakly) norming if and only if each component is an isomorphic copy of a (weakly) norming graph. This strong factorisation result allows us to assume connectivity of $H$ when studying graph norms. Based on joint work with Frederik Garbe, Jan Hladký, and Bjarne Schülke.

Joonkyung Lee (이준경) from University of Hamburg gave a talk at Discrete Math Seminar on January 3, 2019. The title of his talk was “Sidorenko’s conjecture for blow-ups”. (This was the first talk at the room B232.)

A celebrated conjecture of Sidorenko and Erdős–Simonovits states that, for all bipartite graphs H, quasirandom graphs contain asymptotically the minimum number of copies of H taken over all graphs with the same order and edge density. This conjecture has attracted considerable interest over the last decade and is now known to hold for a broad range of bipartite graphs, with the overall trend saying that a graph satisfies the conjecture if it can be built from simple building blocks such as trees in a certain recursive fashion.

Our contribution here, which goes beyond this paradigm, is to show that the conjecture holds for any bipartite graph H with bipartition A∪B where the number of vertices in B of degree k satisfies a certain divisibility condition for each k. As a corollary, we have that for every bipartite graph H with bipartition A∪B, there is a positive integer p such that the blow-up H_{A}^{p} formed by taking p vertex-disjoint copies of H and gluing all copies of A along corresponding vertices satisfies the conjecture. Joint work with David Conlon.