Loading Events

« All Events

  • This event has passed.
:

Joonkyung Lee (이준경), On some properties of graph norms

Tuesday, October 22, 2019 @ 4:30 PM - 5:30 PM KST

Room B232, IBS (기초과학연구원)

For a graph $H$, its homomorphism density in graphs naturally extends to the space of two-variable symmetric functions $W$ in $L^p$, $p\geq e(H)$, denoted by $t_H(W)$. One may then define corresponding functionals $\|W\|_{H}:=|t_H(W)|^{1/e(H)}$ and $\|W\|_{r(H)}:=t_H(|W|)^{1/e(H)}$ and say that $H$ is (semi-)norming if $\|.\|_{H}$ is a (semi-)norm and that $H$ is weakly norming if $\|.\|_{r(H)}$ is a norm.

We obtain some results that contribute to the theory of (weakly) norming graphs. Firstly, we show that ‘twisted’ blow-ups of cycles, which include $K_{5,5}\setminus C_{10}$ and $C_6\square K_2$, are not weakly norming. This answers two questions of Hatami, who asked whether the two graphs are weakly norming. Secondly, we prove that $\|.\|_{r(H)}$ is not uniformly convex nor uniformly smooth, provided that $H$ is weakly norming. This answers another question of Hatami, who estimated the modulus of convexity and smoothness of $\|.\|_{H}$. We also prove that every graph $H$ without isolated vertices is (weakly) norming if and only if each component is an isomorphic copy of a (weakly) norming graph. This strong factorisation result allows us to assume connectivity of $H$ when studying graph norms. Based on joint work with Frederik Garbe, Jan Hladký, and Bjarne Schülke.

Details

Date:
Tuesday, October 22, 2019
Time:
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:
,

Venue

Room B232
IBS (기초과학연구원)

Organizer

Sang-il Oum (엄상일)
Website:
https://dimag.ibs.re.kr/home/sangil/
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.