Jungho Ahn (안정호), A coarse Erdős-Pósa theorem for constrained cycles

Room B332 IBS (기초과학연구원)

An induced packing of cycles in a graph is a set of vertex-disjoint cycles such that the graph has no edge between distinct cycles of the set. The classic Erdős-Pósa theorem shows that for every positive integer $k$, every graph contains $k$ vertex-disjoint cycles or a set of $O(k\log k)$ vertices which intersects every cycle of $G$.

O-joung Kwon (권오정), Erdős-Pósa property of A-paths in unoriented group-labelled graphs

Room B332 IBS (기초과학연구원)

A family $\mathcal{F}$ of graphs is said to satisfy the Erdős-Pósa property if there exists a function $f$ such that for every positive integer $k$, every graph $G$ contains either $k$ (vertex-)disjoint subgraphs in $\mathcal{F}$ or a set of at most $f(k)$ vertices intersecting every subgraph of $G$ in $\mathcal{F}$. We characterize the obstructions to

Sepehr Hajebi, TBA

Room B332 IBS (기초과학연구원)

Irene Muzi, TBA

Room B332 IBS (기초과학연구원)

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.