Debsoumya Chakraborti, Rainbow matchings in edge-colored simple graphs

Room B232 IBS (기초과학연구원)

There has been much research on finding a large rainbow matching in a properly edge-colored graph, where a proper edge coloring is a coloring of the edge set such that no same-colored edges are incident. Barát, Gyárfás, and Sárközy conjectured that in every proper edge coloring of a multigraph (with parallel edges allowed, but not


Joonkyung Lee (이준경), On common graphs

Zoom ID:8628398170 (123450)

A graph $H$ is common if the number of monochromatic copies of $H$ in a 2-edge-colouring of the complete graph $K_n$ is minimised by the random colouring. Burr and Rosta, extending a famous conjecture by Erdős, conjectured that every graph is common. The conjectures by Erdős and by Burr and Rosta were disproved by Thomason and

Hong Liu (刘鸿), A solution to Erdős and Hajnal’s odd cycle problem

Room B232 IBS (기초과학연구원)

I will go over the history on the study of the set of cycle lengths of graphs with large average degree or chromatic number, and discuss recent work with Richard Montgomery on this topic. In particular, we will see the divergence of harmonic sum of odd cycle lengths in graphs with large chromatic number and

O-joung Kwon (권오정), Directed tangles and applications

Room B232 IBS (기초과학연구원)

The canonical tree-decomposition theorem, proved by Robertson and Seymour in their seminal graph minors series, turns out to be an extremely valuable tool in structural and algorithmic graph theory. In this paper, we prove the analogous result for digraphs, the directed tangle tree-decomposition theorem. More precisely, we introduce directed tangles and provide a directed tree-decomposition

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail:, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.