Hyunwoo Lee (이현우), Reconstructing hypergraph matching polynomials

Room B332 IBS (기초과학연구원)

By utilizing the recently developed hypergraph analogue of Godsil's identity by the second author, we prove that for all $n \geq k \geq 2$, one can reconstruct the matching polynomial of an $n$-vertex $k$-uniform hypergraph from the multiset of all induced sub-hypergraphs on $\lfloor \frac{k-1}{k}n \rfloor + 1$ vertices. This generalizes the well-known result of

Nicola Lorenz, A Minor Characterisation of Normally Spanned Sets of Vertices

Room B332 IBS (기초과학연구원)

A rooted spanning tree of a graph $G$ is called normal if the endvertices of all edges of $G$ are comparable in the tree order. It is well known that every finite connected graph has a normal spanning tree (also known as depth-first search tree). Also, all countable graphs have normal spanning trees, but uncountable

Daniel McGinnis, A necessary and sufficient condition for $k$-transversals

Room B332 IBS (기초과학연구원)

We solve a long-standing open problem posed by Goodman and Pollack in 1988 by establishing a necessary and sufficient condition for a finite family of convex sets in $\mathbb{R}^d$ to admit a $k$-transversal (a $k$-dimensional affine subspace that intersects each set) for any $0 \le k \le d-1$. This result is a common generalization of

Eunjin Oh (오은진), Approximation Algorithms for the Geometric Multimatching Problem

Room B332 IBS (기초과학연구원)

Let S and T be two sets of points in a metric space with a total of n points. Each point in S and T has an associated value that specifies an upper limit on how many points it can be matched with from the other set. A multimatching between S and T is a way of pairing points such that each point in S is matched with at least as many

Seokbeom Kim (김석범), The structure of △(1, 2, 2)-free tournaments

Room B332 IBS (기초과학연구원)

Given a tournament $S$, a tournament is $S$-free if it has no subtournament isomorphic to $S$. Until now, there have been only a small number of tournaments $S$ such that the complete structure of $S$-free tournaments is known. Let $\triangle(1, 2, 2)$ be a tournament obtained from the cyclic triangle by substituting two-vertex tournaments for

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.