Stijn Cambie, The precise diameter of reconfiguration graphs

Room B332 IBS (기초과학연구원)

Reconfiguration is about changing instances in small steps. For example, one can perform certain moves on a Rubik's cube, each of them changing its configuration a bit. In this case, in at most 20 steps, one can end up with the preferred result. One could construct a graph with as nodes the possible configurations of

Sebastian Siebertz, Transducing paths in graph classes with unbounded shrubdepth

Zoom ID: 869 4632 6610 (ibsdimag)

Transductions are a general formalism for expressing transformations of graphs (and more generally, of relational structures) in logic. We prove that a graph class C can be FO-transduced from a class of bounded-height trees (that is, has bounded shrubdepth) if, and only if, from C one cannot FO-transduce the class of all paths. This establishes

Jeck Lim, Sums of linear transformations

Zoom ID: 870 0312 9412 (ibsecopro)

We show that if $L_1$ and $L_2$ are linear transformations from $\mathbb{Z}^d$ to $\mathbb{Z}^d$ satisfying certain mild conditions, then, for any finite subset $A$ of $\mathbb{Z}^d$, \ This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for many choices of $L_1$ and

Lars Jaffke, Taming graphs with no large creatures and skinny ladders

Zoom ID: 869 4632 6610 (ibsdimag)

We confirm a conjecture of Gartland and Lokshtanov : if for a hereditary graph class $\mathcal{G}$ there exists a constant $k$ such that no member of $\mathcal{G}$ contains a $k$-creature as an induced subgraph or a $k$-skinny-ladder as an induced minor, then there exists a polynomial $p$ such that every $G \in \mathcal{G}$ contains at

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.