Loading Events

« All Events


Dillon Mayhew, Towards Rota’s conjecture for gain-graphic matroids

August 27 Tuesday @ 4:30 PM - 5:30 PM KST

Room B332, IBS (기초과학연구원)

In some sense, matroids are generalisations of graphs. The idea of graph minors extends to matroids, and so does the idea of a minor-closed class. We can think of a minor-closed class of matroids as being an analogue to the class of graphs embeddable on a surface. Any such class of graphs has a corresponding class of minimal forbidden minors, and these forbidden minors characterise the class. A minor-closed class of matroids is characterised by its minimal forbidden minors in the same way.

Rota’s conjecture is the most famous problem in matroid theory. It says that when F is a finite field, there is a finite number of minimal forbidden minors for the class of matroids that can be represented by vectors over the field of scalars F. A proof has been announced by Geelen, Gerards, and Whittle.

Gain-graphic matroids are analogues to matroids represented by vectors: instead of representing the matroid using numbers from a field, we use elements from a group. So we can ask for an analogue of Rota’s conjecture, except for gain-graphic matroids.

In this talk I will outline our intended path towards Rota’s conjecture for gain-graphic matroids. This is joint work with Daryl Funk.


August 27 Tuesday
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:


Room B332
IBS (기초과학연구원) + Google Map


Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.