Sebastian Wiederrecht, Matching Minors in Bipartite Graphs

Matching minors are a specialisation of minors which preserves the existence and elementary structural properties of perfect matchings. They were first discovered as part of the study of the Pfaffian recognition problem on bipartite graphs (Polya’s Permanent Problem) and acted as a major inspiration for the definition of butterfly minors in digraphs. In this talk we consider the origin and motivation behind the study of matching minors, the current state of the art, and their relation to structural digraph theory. The main result is a generalisation of the structure theorem by Robertson et al. and McCuaig for $K_{3,3}$-matching minor free bipartite graphs to bipartite graphs excluding $K_{t,t}$ as a matching minor for general t. This generalisation can be seen as a matching theoretic version of the Flat Wall Theorem by Robertson and Seymour.

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.