A special session “Extremal and Probabilistic Combinatorics” at the 2021 KMS Spring Meeting is organized by Tuan Tran.

URL: https://www.kms.or.kr/meetings/spring2021/

## Speakers and Schedule

All talks are on April 30.

- [9:00 am]
**Joonkyung Lee (이준경)**, University College London*Majority dynamics on sparse random graphs*

- [9:30 am]
**Dong Yeap Kang (강동엽)**, Unversity of Birmingham*The Erdős-Faber-Lovász conjecture and related results*

- [10:00 am]
**Jinyoung Park (박진영)**, IAS*The threshold for the square of a Hamilton cycle*

- [10:50 am]
**Debsoumya Chakraborti**, IBS Discrete Mathematics Group*Generalized graph saturation*

- [11:20 am]
**Jaehoon Kim (김재훈)**, KAIST*Resolution of the Oberwolfach problem*

- [11:50 am]
**Hong Liu**, University of Warwick*Sublinear expanders and its applications*

## Abstracts

#### Debsoumya Chakraborti, Generalized graph saturation

Graph saturation is one of the oldest areas of investigation in extremal combinatorics. A graph G is called *F-saturated* if G does not contain a subgraph isomorphic to F, but the addition of any edge creates a copy of F. We resolve one of the most fundamental questions of minimizing the number of cliques of size r in a $K_s$-saturated graph for all sufficiently large numbers of vertices, confirming a conjecture of Kritschgau, Methuku, Tait and Timmons. We further prove a corresponding stability result. This talk will be based on joint work with Po-Shen Loh.

#### Jaehoon Kim (김재훈), Resolution of the Oberwolfach problem

The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of $K_{2n+1}$ into edge-disjoint copies of a given 2-factor. We show that this can be achieved for all large n. We actually prove a significantly more general result, which allows for decompositions into more general types of factors.

#### Dong Yeap Kang (강동엽), The Erdős-Faber-Lovász conjecture and related results

A hypergraph is linear if every pair of two distinct edges shares at most one vertex. A longstanding conjecture by Erdős, Faber, and Lovász in 1972, states that the chromatic index of any linear hypergraph on n vertices is at most n.

In this talk, I will present the ideas to prove the conjecture for all large n. This is joint work with Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus.

#### Joonkyung Lee (이준경), Majority dynamics on sparse random graphs

*Majority dynamics* on a graph G is a deterministic process such that every vertex updates its {-1,1}-assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, O’Donnell, Tamuz and Tan conjectured that, in the Erdős-Rényi random graph G(n,p), the random initial {-1,1}-assignment converges to the unanimity with high probability whenever p>> 1/n.

This conjecture was firstly confirmed for $p>Cn^{-1/2}$ for a large constant C>0 by Fountoulakis, Kang and Makai. Although this result has been reproved recently by Tran and Vu and by Berkowitz and Devlin, none of them managed to extend it beyond the barrier $p>Cn^{-1/2}$. We prove the conjecture for sparser random graphs G(n,p), where $Dn^{-3/5}\log n < p < C n^{-1/2}$ with a large constant D>0.

Joint work with Debsoumya Chakraborti, Jeong Han Kim and Tuan Tran.

#### Hong Liu, Sublinear expanders and its applications

I will review the history of sublinear expander and present some recent applications, which lead to resolutions of several long-standing problems in sparse graphs embeddings.

#### Jinyoung Park (박진영), The threshold for the square of a Hamilton cycle

We will talk about a recent result of Jeff Kahn, Bhargav Narayanan, and myself stating that the threshold for the random graph G(n,p) to contain the square of a Hamilton cycle is $1/\sqrt n$, resolving a conjecture of Kühn and Osthus from 2012. The proof idea is motivated by the recent work of Frankston and the three aforementioned authors on a conjecture of Talagrand — “a fractional version of Kahn-Kalai expectation threshold conjecture.”