A graph G is a k-leaf power if there exists a tree T whose leaf set is V(G), and such that uv is an edge if and only if the distance between u and v in T is at most k. The graph classes of k-leaf powers have several applications in computational biology, but recognizing them has remained a challenging algorithmic problem for the past two decades. In a recent paper presented at SODA22, it was shown that k-leaf powers can be recognized in polynomial time if k is fixed.
In this seminar, I will present the algorithm that decides whether a graph G is a k-leaf power in time