Alexander Clifton gave a talk on the existence of a monochromatic increasing sequence with all gaps in a fixed set in any coloring of the set of positive integers at the Discrete Math Seminar

On September 27, 2022, Alexander Clifton from the IBS Discrete Mathematics Group gave a talk on the existence of a monochromatic increasing sequence with all gaps in a fixed set in any coloring of the set of positive integers at the Discrete Math Seminar. The title of his talk was “Ramsey Theory for Diffsequences“.

Alexander Clifton, Ramsey Theory for Diffsequences

Van der Waerden’s theorem states that any coloring of $\mathbb{N}$ with a finite number of colors will contain arbitrarily long monochromatic arithmetic progressions. This motivates the definition of the van der Waerden number $W(r,k)$ which is the smallest $n$ such that any $r$-coloring of $\{1,2,\cdots,n\}$ guarantees the presence of a monochromatic arithmetic progression of length $k$.

It is natural to ask what other arithmetic structures exhibit van der Waerden-type results. One notion, introduced by Landman and Robertson, is that of a $D$-diffsequence, which is an increasing sequence $a_1<a_2<\cdots<a_k$ in which the consecutive differences $a_i-a_{i-1}$ all lie in some given set $D$. We say that $D$ is $r$-accessible if every $r$-coloring of $\mathbb{N}$ contains arbitrarily long monochromatic $D$-diffsequences. When $D$ is $r$-accessible, we define $\Delta(D,k;r)$ as the smallest $n$ such that any $r$-coloring of $\{1,2,\cdots,n\}$ guarantees the presence of a monochromatic $D$-diffsequence of length $k$.

One question of interest is to determine the possible behaviors of $\Delta$ as a function of $k$. In this talk, we will demonstrate that is possible for $\Delta(D,k;r)$ to grow faster than polynomial in $k$. We will also discuss a broad class of $D$’s which are not $2$-accessible.

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.