On November 19, 2019, Ruth Luo from University of California San Diego gave a talk on the Turán-type results on r-uniform hypergraphs without a certain structure called an induced Berge-F. The title of her talk was “Induced Turán problems for hypergraphs“. She is visiting IBS discrete mathematics group until November 22.
Let be a graph. We say that a hypergraph is an induced Berge if there exists a bijective mapping from the edges of to the hyperedges of such that for all , . In this talk, we show asymptotics for the maximum number of edges in -uniform hypergraphs with no induced Berge . In particular, this function is strongly related to the generalized Turán function , i.e., the maximum number of cliques of size in -vertex, -free graphs. Joint work with Zoltan Füredi.