## Meike Hatzel gave a talk on finding a bramble of small order and small size at the Virtual Discrete Math Colloquium

On November 11, 2020, Meike Hatzel from Technische Universität Berlin gave an online talk on the existence of a bramble of small order and small size in a graph of tree-width k at the Virtual Discrete Math Colloquium. The title of her talk was “Constant congestion bramble“.

## Meike Hatzel, Constant congestion bramble

In this talk I will present a small result we achieved during a workshop in February this year. My coauthors on this are Marcin Pilipczuk, Paweł Komosa and Manuel Sorge.

A bramble in an undirected graph $G$ is a family of connected subgraphs of $G$ such that for every two subgraphs $H_1$ and $H_2$ in the bramble either $V(H_1) \cap V(H_2) \neq \emptyset$ or there is an edge of $G$ with one endpoint in $V(H_1)$ and the second endpoint in $V(H_2)$. The order of the bramble is the minimum size of a vertex set that intersects all elements of a bramble.

Brambles are objects dual to treewidth: As shown by Seymour and Thomas, the maximum order of a bramble in an undirected graph $G$ equals one plus the treewidth of $G$. However, as shown by Grohe and Marx, brambles of high order may necessarily be of exponential size: In a constant-degree $n$-vertex expander a bramble of order $\Omega(n^{1/2+\delta})$ requires size exponential in $\Omega(n^{2\delta})$ for any fixed $\delta \in (0,\frac{1}{2}]$. On the other hand, the combination of results of Grohe and Marx, and Chekuri and Chuzhoy shows that a graph of treewidth $k$ admits a bramble of order $\widetilde{\Omega}(k^{1/2})$ and size $\widetilde{O}(k^{3/2})$. ($\widetilde{\Omega}$ and $\widetilde{O}$ hide polylogarithmic factors and divisors, respectively.)

We first sharpen the second bound by proving that every graph $G$ of treewidth at least $k$ contains a bramble of order $\widetilde{\Omega}(k^{1/2})$ and congestion $2$, i.e., every vertex of $G$ is contained in at most two elements of the bramble (thus the bramble is of size linear in its order). Second, we provide a tight upper bound for the lower bound of Grohe and Marx: For every $\delta \in (0,\frac{1}{2}]$, every graph $G$ of treewidth at least $k$ contains a bramble of order $\widetilde{\Omega}(k^{1/2+\delta})$ and size $2^{\widetilde{O}(k^{2\delta})}$.