Matija Bucić, Essentially tight bounds for rainbow cycles in proper edge-colourings

An edge-coloured graph is said to be rainbow if it uses no colour more than once. Extremal problems involving rainbow objects have been a focus of much research over the last decade as they capture the essence of a number of interesting problems in a variety of areas. A particularly intensively studied question due to Keevash, Mubayi, Sudakov and Verstraëte from 2007 asks for the maximum possible average degree of a properly edge-coloured graph on n vertices without a rainbow cycle. Improving upon a series of earlier bounds, Tomon proved an upper bound of $(\log n)^{2+o(1)}$ for this question. Very recently, Janzer-Sudakov and Kim-Lee-Liu-Tran independently removed the $o(1)$ term in Tomon’s bound. We show that the answer to the question is equal to $(\log n)^{1+o(1)}$.
A key tool we use is the theory of robust sublinear expanders. In addition, we observe a connection between this problem and several questions in additive number theory, allowing us to extend existing results on these questions for abelian groups to the case of non-abelian groups.
Joint work with: Noga Alon, Lisa Sauermann, Dmitrii Zakharov and Or Zamir.

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.