James Davies, Separating polynomial $\chi$-boundedness from $\chi$-boundedness

We prove that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every function $g : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ with $g(1)=1$ and $g \ge f$, there is a hereditary class of graphs $\mathcal{G}$ such that for each $\omega \in \mathbb{N}$, the maximum chromatic number of a graph in $\mathcal{G}$ with clique number $\omega$ is equal to $g(\omega)$. This extends a recent breakthrough of Carbonero, Hompe, Moore, and Spirk. In particular, this proves that there are hereditary classes of graphs that are $\chi$-bounded but not polynomially $\chi$-bounded.

Joint work with Marcin Briański and Bartosz Walczak.

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.