Eric Vigoda gave a talk on determining computational phase transitions for approximate counting/sampling by Markov Chain Monte Carlo (MCMC) algorithms at the Discrete Math Seminar

On July 4, 2022, Eric Vigoda from the UC Santa Barbara gave a talk at the Discrete Math Seminar on determining computational phase transitions from the fast mixing to the NP-hardness for approximate counting/sampling by Markov Chain Monte Carlo (MCMC) algorithms. The title of his talk was “Computational phase transition and MCMC algorithms“.

Eric Vigoda, Computational phase transition and MCMC algorithms

This talk will highlight recent results establishing a beautiful computational phase transition for approximate counting/sampling in (binary) undirected graphical models (such as the Ising model or on weighted independent sets). The computational problem is to sample from the equilibrium distribution of the model or equivalently approximate the corresponding normalizing factor known as the partition function. We show that when correlations die off on the infinite D-regular tree then the Gibbs sampler has optimal mixing time of $O(n \log n)$ on any graph of maximum degree D, whereas when the correlations persist (in the limit) then the sampling/counting problem are NP-hard to approximate.  The Gibbs sampler is a simple Markov Chain Monte Carlo (MCMC) algorithm. Key to these mixing results are a new technique known as spectral independence which considers the pairwise influence of vertices. We show that spectral independence implies an optimal convergence rate for a variety of MCMC algorithms.

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.