Akanksha Agrawal, Polynomial Kernel for Interval Vertex Deletion

Given a graph G and an integer k, the Interval Vertex Deletion (IVD) problem asks whether there exists a vertex subset S of size at most k, such that G-S is an interval graph. A polynomial kernel for a parameterized problem is a polynomial time preprocessing algorithm that outputs an equivalent instance of the problem whose size is bounded by a polynomial function of the parameter. The existence of a polynomial kernel for IVD remained a well-known open problem in Parameterized Complexity. In this talk we look at a sketch of a polynomial kernel for the problem (with the solution size as the parameter). To illustrate one of the key ingredients of our kernel, we will look at a polynomial kernel for IVD, when parameterized by the vertex cover number.

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.