Ilkyoo Choi (최일규), Flexibility of Planar Graphs

Oftentimes in chromatic graph theory, precoloring techniques are utilized in order to obtain the desired coloring result. For example, Thomassen’s proof for 5-choosability of planar graphs actually shows that two adjacent vertices on the same face can be precolored. In this vein, we investigate a precoloring extension problem formalized by Dvorak, Norin, and Postle named flexibility. Given a list assignment $L$ on a graph $G$, an $L$-request is a function on a subset $S$ of the vertices that indicates a preferred color in $L(v)$ for each vertex $v\in S$. A graph $G$ is $\varepsilon$-flexible for list size $k$ if given a $k$-list assignment $L$ and an $L$-request, there is an $L$-coloring of $G$ satisfying an $\varepsilon$-fraction of the requests in $S$. We survey known results regarding this new concept, and prove some new results regarding flexibility of planar graphs.

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail:, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.