Jinha Kim (김진하), Collapsibility of Non-Cover Complexes of Graphs

Let $G$ be a graph on the vertex set $V$. A vertex subset $W \subset V$ is a cover of $G$ if $V \setminus W$ is an independent set of $G$, and $W$ is a non-cover of $G$ if $W$ is not a cover of $G$. The non-cover complex of $G$ is a simplicial complex on $V$ whose faces are non-covers of $G$. Then the non-cover complex of $G$ is the combinatorial Alexander dual of the independence complex of $G$. In this talk, I will show the $(|V(G)|-i\gamma(G)-1)$-collapsibility of the non-cover complex of a graph $G$ where $i\gamma(G)$ denotes the independence domination number of $G$ using the minimal exclusion sequence method. This is joint work with Ilkyoo Choi and Boram Park.

Welcome Jinha Kim (김진하) and Minki Kim (김민기), new members of IBS Discrete Mathematics Group

The IBS Discrete Mathematics Group welcomes Dr. Jinha Kim (김진하) and Dr. Minki Kim (김민기), new research fellows at the IBS Discrete Mathematics Group from September 1, 2020.

Jinha Kim (김진하) received his Ph.D. from the Department of Mathematics at Seoul National University in 2019 under the supervision of Prof. Woong Kook. Until recently, she was a postdoctoral fellow at Technion in Israel. She is interested in combinatorics, discrete geometry, topological combinatorics, and graph theory.

Minki Kim (김민기) received his Ph.D. from the Department of Mathematical Sciences at KAIST in 2018 under the supervision of Prof. Andreas Holmsen. Until recently, he was a postdoctoral fellow at Technion in Israel. He is interested in discrete geometry, topological combinatorics, and graph theory.