- This event has passed.

# Eunjin Oh (오은진), Parameterized algorithms for the planar disjoint paths problem

## Tuesday, March 7, 2023 @ 4:30 PM - 5:30 PM KST

Given an undirected planar graph $G$ with $n$ vertices and a set $T$ of $k$ pairs $(s_i,t_i)_{i=1}^k$ of vertices, the goal of the planar disjoint paths problem is to find a set $\mathcal P$ of $k$ pairwise vertex-disjoint paths connecting $s_i$ and $t_i$ for all indices $i\in\{1,\ldots,k\}$. This problem has been studied extensively due to its numerous applications such as VLSI layout and circuit routing. However, this problem is NP-complete even for grid graphs. This motivates the study of this problem from the viewpoint of parameterized algorithms.

In this talk, I will present a $2^{O(k^2)}n$-time algorithm for the planar disjoint paths problem. This improves the two previously best-known algorithms: $2^{2^{O(k)}}n$-time algorithm [Discrete Applied Mathematics 1995] and $2^{O(k^2)}n^6$-time algorithm [STOC 2020].

This is joint work with Kyungjin Cho and Seunghyeok Oh.