We use YouTube Live to broadcast seminar talks live if the speaker agrees.

- This event has passed.

# Seunghun Lee (이승훈), Leray numbers of complexes of graphs with bounded matching number

## April 28 Tuesday @ 4:30 PM - 5:30 PM KST

Given a graph $G$ on the vertex set $V$, the *non-matching complex* of $G$, $\mathsf{NM}_k(G)$, is the family of subgraphs $G’ \subset G$ whose matching number $\nu(G’)$ is strictly less than $k$. As an attempt to generalize the result by Linusson, Shareshian and Welker on the homotopy types of $\mathsf{NM}_k(K_n)$ and $\mathsf{NM}_k(K_{r,s})$ to arbitrary graphs $G$, we show that (i) $\mathsf{NM}_k(G)$ is $(3k-3)$-Leray, and (ii) if $G$ is bipartite, then $\mathsf{NM}_k(G)$ is $(2k-2)$-Leray. This result is obtained by analyzing the homology of the links of non-empty faces of the complex $\mathsf{NM}_k(G)$, which vanishes in all dimensions $d\geq 3k-4$, and all dimensions $d \geq 2k-3$ when $G$ is bipartite. As a corollary, we have the following rainbow matching theorem which generalizes the result by Aharoni et. al. and Drisko’s theorem: Let $E_1, \dots, E_{3k-2}$ be non-empty edge subsets of a graph and suppose that $\nu(E_i\cup E_j)\geq k$ for every $i\ne j$. Then $E=\bigcup E_i$ has a rainbow matching of size $k$. Furthermore, the number of edge sets $E_i$ can be reduced to $2k-1$ when $E$ is the edge set of a bipartite graph.

This is a joint work with Andreas Holmsen.