Loading Events

« All Events

  • This event has passed.
:

Tony Huynh, Aharoni’s rainbow cycle conjecture holds up to an additive constant

May 7 Tuesday @ 4:30 PM - 5:30 PM KST

Room B332, IBS (기초과학연구원)

In 2017, Aharoni proposed the following generalization of the Caccetta-Häggkvist conjecture for digraphs. If G is a simple n-vertex edge-colored graph with n color classes of size at least r, then G contains a rainbow cycle of length at most ⌈n/r⌉.

In this talk, we prove that Aharoni’s conjecture holds up to an additive constant. Specifically, we show that for each fixed r, there exists a constant c such that if G is a simple n-vertex edge-colored graph with n color classes of size at least r, then G contains a rainbow cycle of length at most n/r+c.

This is joint work with Patrick Hompe.

Details

Date:
May 7 Tuesday
Time:
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:

Venue

Room B332
IBS (기초과학연구원) + Google Map

Organizer

Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.