Paul Seymour, The Erdős-Hajnal conjecture is true for excluding a five-cycle

Zoom ID: 869 4632 6610 (ibsdimag)

In an n-vertex graph, there must be a clique or stable set of size at least $C\log n$, and there are graphs where this bound is attained. But if we look at graphs not containing a fixed graph H as an induced subgraph, the largest clique or stable set is bigger. Erdős and Hajnal conjectured in 1977 that

Paul Seymour, Polynomial bounds for chromatic number

Zoom ID: 869 4632 6610 (ibsdimag)

The Gyárfás-Sumner conjecture says that for every forest $H$, there is a function $f$ such that the chromatic number $\chi(G)$ is at most $f(\omega(G))$ for every $H$-free graph $G$ ("$H$-free" means with no induced subgraph isomorphic to $H$, and $\omega(G)$ is the size of the largest clique of $G$). This well-known conjecture has been proved only for a

Paul Seymour, A loglog step towards the Erdős-Hajnal conjecture

Zoom ID: 869 4632 6610 (ibsdimag)

In 1977, Erdős and Hajnal made the conjecture that, for every graph $H$, there exists $c>0$ such that every $H$-free graph $G$ has a clique or stable set of size at least $|G|^c$; and they proved that this is true with $|G|^c$ replaced by $2^{c\sqrt{\log |G|}}$. There has no improvement on this result (for general

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.