Meike Hatzel, Constant congestion bramble

Zoom ID: 934 3222 0374 (ibsdimag)

In this talk I will present a small result we achieved during a workshop in February this year. My coauthors on this are Marcin Pilipczuk, Paweł Komosa and Manuel Sorge. A bramble in an undirected graph $G$ is a family of connected subgraphs of $G$ such that for every two subgraphs $H_1$ and $H_2$ in the bramble either $V(H_1) \cap

Yijia Chen (陈翌佳), Graphs of bounded shrub-depth, through a logic lens

Zoom ID: 934 3222 0374 (ibsdimag)

Shrub-depth is a graph invariant often considered as an extension of tree-depth to dense graphs. In this talk I will explain our recent proofs of two results about graphs of bounded shrub-depth. Every graph property definable in monadic-second order logic, e.g., 3-colorability, can be evaluated by Boolean circuits of constant depth and polynomial size, whose

Da Qi Chen, Bipartite Saturation

Zoom ID: 934 3222 0374 (ibsdimag)

In extremal graph theory, a graph G is H-saturated if G does not contain a copy of H but adding any missing edge to G creates a copy of H. The saturation number, sat(n, H), is the minimum number of edges in an n-vertex H-saturated graph. This class of problems was first studied by Zykov

Deniz Sarikaya, What means Hamiltonicity for infinite graphs and how to force it via forbidden induced subgraphs

Zoom ID: 934 3222 0374 (ibsdimag)

The study of Hamiltonian graphs, i.e. finite graphs having a cycle that contains all vertices of the graph, is a central theme of finite graph theory. For infinite graphs such a definition cannot work, since cycles are finite. We shall debate possible concepts of Hamiltonicity for infinite graphs and eventually follow the topological approach by

Karl Heuer, Even Circuits in Oriented Matroids

Zoom ID: 934 3222 0374 (ibsdimag)

In this talk I will state a generalisation of the even directed cycle problem, which asks whether a given digraph contains a directed cycle of even length, to orientations of regular matroids. Motivated by this problem, I will define non-even oriented matroids generalising non-even digraphs, which played a central role in resolving the computational complexity of

Jaiung Jun (전재웅), On the Hopf algebra of multi-complexes

Zoom ID: 934 3222 0374 (ibsdimag)

In combinatorics, Hopf algebras appear naturally when studying various classes of combinatorial objects, such as graphs, matroids, posets or symmetric functions. Given such a class of combinatorial objects, basic information on these objects regarding assembly and disassembly operations are encoded in the algebraic structure of a Hopf algebra. One then hopes to use algebraic identities of

Paul Seymour, The Erdős-Hajnal conjecture is true for excluding a five-cycle

Zoom ID: 934 3222 0374 (ibsdimag)

In an n-vertex graph, there must be a clique or stable set of size at least $C\log n$, and there are graphs where this bound is attained. But if we look at graphs not containing a fixed graph H as an induced subgraph, the largest clique or stable set is bigger. Erdős and Hajnal conjectured in 1977 that

Rose McCarty, Vertex-minors and flooding immersions

Zoom ID: 934 3222 0374 (ibsdimag)

An immersion of a graph H into a graph G sends edges of H into edge-disjoint trails of G. We say the immersion is flooding if every edge of G is in one of the trails. Flooding immersions are interesting for Eulerian group-labelled graphs; in this context they behave quite differently from regular immersions. Moreover,

Dong Yeap Kang (강동엽), A proof of the Erdős-Faber-Lovász conjecture

Zoom ID: 934 3222 0374 (ibsdimag)

A hypergraph is linear if every pair of two distinct edges shares at most one vertex. A longstanding conjecture by Erdős, Faber, and Lovász in 1972, states that the chromatic index of any linear hypergraph on $n$ vertices is at most $n$. In this talk, I will present the ideas to prove the conjecture for

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.