Xizhi Liu, Hypergraph Turán problem: from 1 to ∞

Zoom ID: 870 0312 9412 (ibsecopro) [CLOSED]

One interesting difference between (nondegenerate) Graph Turán problem and Hypergraph Turán problem is that the hypergraph families can have at least two very different extremal constructions. In this talk, we

Eric Vigoda, Computational phase transition and MCMC algorithms

Room B332 IBS (기초과학연구원)

This talk will highlight recent results establishing a beautiful computational phase transition for approximate counting/sampling in (binary) undirected graphical models (such as the Ising model or on weighted independent sets). The computational problem is to

Jinyoung Park (박진영), Thresholds 1/2

Room B332 IBS (기초과학연구원)

Thresholds for increasing properties of random structures are a central concern in probabilistic combinatorics and related areas. In 2006, Kahn and Kalai conjectured that for any nontrivial increasing property on

Jinyoung Park (박진영), Thresholds 2/2

Room B332 IBS (기초과학연구원)

Thresholds for increasing properties of random structures are a central concern in probabilistic combinatorics and related areas. In 2006, Kahn and Kalai conjectured that for any nontrivial increasing property on

Eun Jung Kim (김은정), Directed flow-augmentation

Room B332 IBS (기초과학연구원)

We show a flow-augmentation algorithm in directed graphs: There exists a polynomial-time algorithm that, given a directed graph G, two integers s,tV(G), and an integer k, adds (randomly) to

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.