Loading Events

« All Events

:

Sepehr Hajebi, Induced subgraphs and tree decompositions V. One neighbor in a hole

July 7 Thursday @ 10:00 AM - 11:00 AM KST

Zoom ID: 869 4632 6610 (ibsdimag)
A hole in a graph $G$ is an induced cycle of length at least four, and for every hole $H$ in $G$, a vertex $h\in G\setminus H$ is called a $t$-hub for $H$ if $h$ has at least $t$ neighbor in $H$. Sintiari and Trotignon were the first to construct graphs with arbitrarily large treewidth and no induced subgraph isomorphic to the “basic obstructions,” that is, a fixed complete graph, a fixed complete bipartite graph (with parts of equal size), all subdivisions of a fixed wall and line graphs of all subdivisions of a fixed wall. They named their counterexamples “layered wheels” for a good reason: layered wheels contain wheels in abundance, where a wheel means a hole with a $3$-hub. In accordance, one may ask whether graphs with no wheel and no induced subgraph isomorphic to the basic obstructions have bounded treewidth. This was also disproved by a recent construction due to Davies. But holes with a $2$-hub cannot be avoided in graphs with large treewidth: graphs containing no hole with a $2$-hub and no induced subgraph isomorphic to the basic obstructions have bounded treewidth. I will present a proof of this result, and will also give an overview of related works.
Based on joint work with Tara Abrishami, Bogdan Alecu, Maria Chudnovsky, Sophie Spirkl and Kristina Vušković.

Details

Date:
July 7 Thursday
Time:
10:00 AM - 11:00 AM KST
Event Category:
Event Tags:

Venue

Zoom ID: 869 4632 6610 (ibsdimag)

Organizer

O-joung Kwon (권오정)
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.