Let $X$ be a 2-dimensional simplicial complex. Denote by $\text{ex}_{\hom}(n,X)$ the maximum number of 2-simplices in an $n$-vertex simplicial complex that has no sub-simplicial complex homeomorphic to $X$. The asymptotics of $\text{ex}_{\hom}(n,X)$ have recently been determined for all surfaces $X$. I will discuss these results, as well as ongoing work bounding $\text{ex}_{\hom}(n,X)$ for arbitrary 2-dimensional …
Seminars and Colloquiums
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
Given an undirected planar graph $G$ with $n$ vertices and a set $T$ of $k$ pairs $(s_i,t_i)_{i=1}^k$ of vertices, the goal of the planar disjoint paths problem is to find a set $\mathcal P$ of $k$ pairwise vertex-disjoint paths connecting $s_i$ and $t_i$ for all indices $i\in\{1,\ldots,k\}$. This problem has been studied extensively due to … |
0 events,
|
1 event,
-
A subset $A\subseteq \mathbb Z$ of integers is free if for every two distinct subsets $B, B'\subseteq A$ we have \Pisier asked if for every subset $A\subseteq \mathbb Z$ of integers the following two statement are equivalent: (i) $A$ is a union of finitely many free sets. (ii) There exists $\epsilon>0$ such that every finite … |
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
We give a summary on the work of the last months related to Frankl's Union-Closed conjecture and its offsprings. The initial conjecture is stated as a theorem in extremal set theory; when a family F is union-closed (the union of sets of F is itself a set of $\mathcal F$), then $\mathcal F$ contains an … |
0 events,
|
1 event,
-
In 1977, Erdős and Hajnal made the conjecture that, for every graph $H$, there exists $c>0$ such that every $H$-free graph $G$ has a clique or stable set of size at least $|G|^c$; and they proved that this is true with $|G|^c$ replaced by $2^{c\sqrt{\log |G|}}$. There has no improvement on this result (for general … |
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
Extremal Combinatorics studies the maximum or minimum size of finite objects (numbers, sets, graphs) satisfying certain properties. In this talk, I introduce the conjectures I solved on Extremal Combinatorics, and also introduce recent extremal problems. |
1 event,
-
In 1993, Erdős, Hajnal, Simonovits, Sós and Szemerédi proposed to determine the value of Ramsey-Turán density $\rho(3,q)$ for $q\ge3$. Erdős et al. (1993) and Kim, Kim and Liu (2019) proposed two corresponding conjectures. However, we only know four values of this Ramsey-Turán density by Erdős et al. (1993). There is no progress on this classical … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
In this talk, we will discuss the problem of determining the maximum number of edges in an n-vertex k-critical graph. A graph is considered k-critical if its chromatic number is k, but any proper subgraph has a chromatic number less than k. The problem remains open for any integer k ≥ 4. Our presentation will … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|

