Loading Events

« All Events

:

Xiaofan Yuan (袁晓璠), Rainbow structures in edge colored graphs

February 3 Tuesday @ 4:30 PM - 5:30 PM KST

Room B332, IBS (기초과학연구원)

Speaker

Xiaofan Yuan (袁晓璠)
IBS Extremal Combinatorics and Probability Group
https://math.la.asu.edu/~xyuan/

Let $G = (V, E)$ be a graph on $n$ vertices, and let $c : E \to P$, where $P$ is a set of colors. Let $\delta^c(G) = \min_{v \in V} \{ d^{c}(v) \}$ where $d^c(v)$ is the number of colors on edges incident to a vertex $v$ of $G$. In 2011, Fujita and Magnant showed that if $G$ is a graph on $n$ vertices that satisfies $\delta^c(G)\geq n/2$, then for every two vertices $u, v$ there is a properly-colored $u,v$-path in $G$. We show that for sufficiently large graphs $G$, the same bound for $\delta^c(G)$ implies that any two vertices are connected by a rainbow path. We also show sufficient conditions on $\delta^c(G)$ for the existence of a rainbow cycle of length $2k$ in sufficiently large bipartite graphs $G$, which are tight in many cases. This is joint work with Andrzej Czygrinow.

Details

Venue

Organizer

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.