
- This event has passed.
Hyunwoo Lee (이현우), Reconstructing hypergraph matching polynomials
April 1 Tuesday @ 4:30 PM - 5:30 PM KST
By utilizing the recently developed hypergraph analogue of Godsil’s identity by the second author, we prove that for all $n \geq k \geq 2$, one can reconstruct the matching polynomial of an $n$-vertex $k$-uniform hypergraph from the multiset of all induced sub-hypergraphs on $\lfloor \frac{k-1}{k}n \rfloor + 1$ vertices. This generalizes the well-known result of Godsil on graphs in 1981 to every uniform hypergraph. As a corollary, we show that for every graph $F$, one can reconstruct the number of $F$-factors in a graph under analogous conditions. We also constructed examples that imply the number $\lfloor \frac{k-1}{k}n \rfloor + 1$ is the best possible for all $n\geq k \geq 2$ with $n$ divisible by $k$. This is joint work Donggyu Kim.