Loading Events

« All Events

:

Jang Soo Kim (김장수), Longest elements in a semigroup of functions and Slater indices

February 4 Tuesday @ 4:30 PM - 5:30 PM KST

Room B332, IBS (기초과학연구원)

The group \( S_n \) of permutations on \([n]=\{1,2,\dots,n\} \) is generated by simple transpositions \( s_i = (i,i+1) \). The length \( \ell(\pi) \) of a permutation \( \pi \) is defined to be the minimum number of generators whose product is \( \pi \). It is well-known that the longest element in \( S_n \) has length \( n(n-1)/2 \). Let \( F_n \) be the semigroup of functions \( f:[n]\to[n] \), which are generated by the simple transpositions \( s_i \) and the function \( t:[n]\to[n] \) given by \( t(1) =t(2) = 1 \) and \( t(i) = i \) for \( i\ge3 \). The length \( \ell(f) \) of a function \( f\in F_n \) is defined to be the minimum number of these generators whose product is \( f \). In this talk, we study the length of longest elements in \( F_n \). We also find a connection with the Slater index of a tournament of the
complete graph \( K_n \). This is joint work with Yasuhide Numata.

Details

Date:
February 4 Tuesday
Time:
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:
,

Venue

Room B332
IBS (기초과학연구원) + Google Map

Organizer

Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.