# Minho Cho (조민호), Strong Erdős-Hajnal property on chordal graphs and its variants

## June 13 Tuesday @ 4:30 PM - 5:30 PM KST

A graph class $\mathcal{G}$ has the strong Erdős-Hajnal property (SEH-property) if there is a constant $c=c(\mathcal{G}) > 0$ such that for every member $G$ of $\mathcal{G}$, either $G$ or its complement has $K_{m, m}$ as a subgraph where $m \geq \left\lfloor c|V(G)| \right\rfloor$. We prove that the class of chordal graphs satisfies SEH-property with constant $c = 2/9$.

On the other hand, a strengthening of SEH-property which we call the colorful Erdős-Hajnal property was discussed in geometric settings by Alon et al.(2005) and by Fox et al.(2012). Inspired by their results, we show that for every pair $F_1, F_2$ of subtree families of the same size in a tree $T$ with $k$ leaves, there exist subfamilies $F’_1 \subseteq F_1$ and $F’_2 \subseteq F_2$ of size $\theta \left( \frac{\ln k}{k} \left| F_1 \right|\right)$ such that either every pair of representatives from distinct subfamilies intersect or every such pair do not intersect. Our results are asymptotically optimal.

Joint work with Andreas Holmsen, Jinha Kim and Minki Kim.