- This event has passed.

# Zixiang Xu (徐子翔), On the degenerate Turán problems

## Tuesday, October 4, 2022 @ 4:30 PM - 5:30 PM KST

Room B332,
IBS (기초과학연구원)

For a graph $F$, the Turán number is the maximum number of edges in an $n$-vertex simple graph not containing $F$. The celebrated Erdős-Stone-Simonovits Theorem gives that \[ \text{ex}(n,F)=\bigg(1-\frac{1}{\chi(F)-1}+o(1)\bigg)\binom{n}{2},\] where $\chi(F)$ is the chromatic number of $H$. This theorem asymptotically solves the problem when $\chi(F)\geqslant 3$. In case of bipartite graphs $F$, not even the order of magnitude is known in general. In this talk, I will introduce some recent progress on Turán numbers of bipartite graphs and related generalizations and discuss several methods developed in recent years. Finally, I will introduce some interesting open problems on this topic.