- This event has passed.

# Ben Lund, Radial projections in finite space

## Monday, June 27, 2022 @ 4:30 PM - 5:30 PM KST

Given a set $E$ and a point $y$ in a vector space over a finite field, the radial projection $\pi_y(E)$ of $E$ from $y$ is the set of lines that through $y$ and points of $E$. Clearly, $|\pi_y(E)|$ is at most the minimum of the number of lines through $y$ and $|E|$. I will discuss several results on the general question: For how many points $y$ can $|\pi_y(E)|$ be much smaller than this maximum?

This is motivated by an analogous question in fractal geometry. The Hausdorff dimension of a radial projection of a set $E$ in $n$ dimensional real space will typically be the minimum of $n-1$ and the Hausdorff dimension of $E$. Several recent papers by authors including Matilla, Orponen, Liu, Shmerikin, and Wang consider the question: How large can the set of points with small radial projections be? This body of work has several important applications, including recent progress on the Falconer distance conjecture.

This is joint with Thang Pham and Vu Thi Huong Thu.