Loading Events

« All Events


Semin Yoo (유세민), Combinatorics of Euclidean spaces over finite fields

July 20 Tuesday @ 4:30 PM - 5:30 PM KST

Room B232, IBS (기초과학연구원)

$q$-analogues of quantities in mathematics involve perturbations of classical quantities using the parameter $q$, and revert to the original quantities when $q$ goes $1$. An important example is the $q$-analogues of binomial coefficients, denoted by $\binom{n}{k}_{q}$, which give the number of $k$-dimensional subspaces in $\mathbb{F}_{q}^{n}$. When $q$ goes to $1$, this reverts to the binomial coefficients which measure the number of $k$-sets in $\left [ n \right ]$.

In this talk, we add one more structure in $\mathbb{F}_{q}^{n}$, which is the Euclidean quadratic form: $\text{dot}_{n}:=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$. It turns out that the number of quadratic subspaces of Euclidean type in $(\mathbb{F}_{q}^{n},\text{dot}_{n})$ can be described as the form of the analogue of binomial coefficients. The main goal of this talk is to define the dot-analogues of the binomial coefficients and to study related combinatorics. No prior knowledge about the theory of quadratic form is required.


July 20 Tuesday
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:


Room B232
IBS (기초과학연구원)


Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.