- This event has passed.

# Doowon Koh (고두원), Mattila-Sjölin type functions: A finite field model

## Tuesday, June 1, 2021 @ 4:30 PM - 5:30 PM KST

Let $\mathbb{F}_q$ be a finite field of order $q$ which is a prime power. In the finite field setting, we say that a function $\phi\colon \mathbb{F}_q^d\times \mathbb{F}_q^d\to \mathbb{F}_q$ is a Mattila-Sjölin type function in $\mathbb{F}_q^d$ if for any $E\subset \mathbb{F}_q^d$ with $|E|\gg q^{\frac{d}{2}}$, we have $\phi(E, E)=\mathbb{F}_q$. The main purpose of this talk is to present the existence of such a function. More precisely, we will construct a concrete function $\phi: \mathbb{F}_q^4\times \mathbb{F}_q^4\to \mathbb{F}_q$ with $q\equiv 3 \mod{4}$ such that if $E\subset \mathbb F_q^4$ with $|E|>q^2,$ then $\phi(E,E)=\mathbb F_q$. This is a joint work with Daewoong Cheong, Thang Pham, and Chun-Yen Shen.