We use YouTube Live to broadcast seminar talks live if the speaker agrees.

- This event has passed.

# Eun Jung Kim (김은정), Twin-width: tractable FO model checking

## May 12 Tuesday @ 4:30 PM - 5:30 PM KST

Inspired by a *width* invariant defined on permutations by Guillemot and Marx [SODA ’14], we introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs, map graphs, $K_t$-free unit $d$-dimensional ball graphs, posets with antichains of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On all these classes (except map graphs without geometric embedding) we show how to compute in polynomial time a *sequence of $d$-contractions*, witness that the twin-width is at most $d$. We show that FO model checking, that is deciding if a given first-order formula $\phi$ evaluates to true for a given binary structure $G$ on a domain $D$, is FPT in $|\phi|$ on classes of bounded twin-width, provided the witness is given. More precisely, being given a $d$-contraction sequence for $G$, our algorithm runs in time $f(d,|\phi|) \cdot |D|$ where $f$ is a computable but non-elementary function. We also prove that bounded twin-width is preserved by FO interpretations and transductions (allowing operations such as squaring or complementing a graph). This unifies and significantly extends the knowledge on fixed-parameter tractability of FO model checking on non-monotone classes, such as the FPT algorithm on bounded-width posets by Gajarsk*ý* et al. [FOCS ’15].

In order to explore the limits of twin-width, we generalize to bounded twin-width classes a result by Norine et al. [JCTB ’06] stating that proper minor-free classes are small (i.e., they contain at most $n! c^n$ graphs on $n$ vertices, for some constant $c$). This implies by a counting argument that bounded-degree graphs, interval graphs, and unit disk graphs have unbounded twin-width.

Joint work with Stéphan Thomassé, Édouard Bonnet, and Rémi Watrigant.