Loading Events

« All Events

  • This event has passed.

Eun Jung Kim (김은정), Twin-width: tractable FO model checking

Tuesday, May 12, 2020 @ 4:30 PM - 5:30 PM KST

Room B232, IBS (기초과학연구원)

Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA ’14], we introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs, map graphs, $K_t$-free unit $d$-dimensional ball graphs, posets with antichains of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On all these classes (except map graphs without geometric embedding) we show how to compute in polynomial time a sequence of $d$-contractions, witness that the twin-width is at most $d$. We show that FO model checking, that is deciding if a given first-order formula $\phi$ evaluates to true for a given binary structure $G$ on a domain $D$, is FPT in $|\phi|$ on classes of bounded twin-width, provided the witness is given. More precisely, being given a $d$-contraction sequence for $G$, our algorithm runs in time $f(d,|\phi|) \cdot |D|$ where $f$ is a computable but non-elementary function. We also prove that bounded twin-width is preserved by FO interpretations and transductions (allowing operations such as squaring or complementing a graph). This unifies and significantly extends the knowledge on fixed-parameter tractability of FO model checking on non-monotone classes, such as the FPT algorithm on bounded-width posets by Gajarský et al. [FOCS ’15].

In order to explore the limits of twin-width, we generalize to bounded twin-width classes a result by Norine et al. [JCTB ’06] stating that proper minor-free classes are small (i.e., they contain at most $n! c^n$ graphs on $n$ vertices, for some constant $c$). This implies by a counting argument that bounded-degree graphs, interval graphs, and unit disk graphs have unbounded twin-width.

Joint work with Stéphan Thomassé, Édouard Bonnet, and Rémi Watrigant.


Tuesday, May 12, 2020
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:


Room B232
IBS (기초과학연구원)


Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.