Loading Events

« All Events

  • This event has passed.

Adam Zsolt Wagner, The largest projective cube-free subsets of $Z_{2^n}$

Monday, January 20, 2020 @ 4:30 PM - 5:30 PM KST

Room B232, IBS (기초과학연구원)

What is the largest subset of $Z_{2^n}$ that doesn’t contain a projective d-cube? In the Boolean lattice, Sperner’s, Erdos’s, Kleitman’s and Samotij’s theorems state that families that do not contain many chains must have a very specific layered structure. We show that if instead of $Z_2^n$ we work in $Z_{2^n}$, analogous statements hold if one replaces the word k-chain by projective cube of dimension $2^{k-1}$. The largest d-cube-free subset of $Z_{2^n}$, if d is not a power of two, exhibits a much more interesting behaviour.

This is joint work with Jason Long.


Monday, January 20, 2020
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:


Room B232
IBS (기초과학연구원)


Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.