Loading Events

« All Events

  • This event has passed.

Sanjeeb Dash, Boolean decision rules via column generation

Tuesday, January 14, 2020 @ 4:30 PM - 5:30 PM KST

Room B232, IBS (기초과학연구원)

In many applications of machine learning, interpretable or explainable models for binary classification, such as decision trees or decision lists, are preferred over potentially more accurate but less interpretable models such as random forests or support vector machines. In this talk, we consider boolean decision rule sets (equivalent to boolean functions in disjunctive normal form) as interpretable models for binary classification. We define the complexity of a rule set to be the number of rules (clauses) plus the number of conditions (literals) across all clauses, and assume that simpler or less complex models are more interpretable. We discuss an integer programming formulation for such models that trades off classification accuracy against rule simplicity, and obtain high-quality classifiers of this type using column generation techniques. Compared to some recent alternatives, our algorithm dominates the accuracy-simplicity trade-off in 8 out of 16 datasets, and also produced the winning entry in the 2018 FICO explainable machine learning challenge. When compared to rule learning methods designed for accuracy, our algorithm sometimes finds significantly simpler solutions that are no less accurate.


Tuesday, January 14, 2020
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:


Room B232
IBS (기초과학연구원)


Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.