
- This event has passed.
Denys Bulavka, Strict Erdős-Ko-Rado Theorems for Simplicial Complexes
June 4 Wednesday @ 4:30 PM - 5:30 PM KST
The now classical theorem of Erdős, Ko and Rado establishes
the size of a maximal uniform family of pairwise-intersecting sets as well as a characterization of the families attaining such upper bound. One natural extension of this theorem is that of restricting the possiblechoices for the sets. That is, given a simplicial complex, what is the size of a maximal uniform family of pairwise-intersecting faces. Holroyd and Talbot, and Borg conjectured that the same phenomena as in the classical case (i.e., the simplex) occurs: there is a maximal size pairwise-intersecting family with all its faces having some common vertex. Under stronger hypothesis, they also conjectured that if a family attains such bound then its members must have a common vertex. In this talk I will present some progress towards the characterization of the maximal families. Concretely I will show that the conjecture is true for near-cones of sufficiently high depth. In particular, this implies that the characterization of maximal families holds for, for example, the independence complex of a chordal graph with an isolated vertex as well as the independence complex of a (large enough) disjoint union of graphs with at least one isolated vertex. Under stronger hypothesis, i.e., more isolated vertices, we also recover a stability theorem.
This talk is based on a joint work with Russ Woodroofe.