Doowon Koh (고두원), On the cone restriction conjecture in four dimensions and applications in incidence geometry

Room B232 IBS (기초과학연구원)

Main purpose of this talk is to introduce a connection between restriction estimates for cones and point-sphere incidence theorems in the finite field setting. First, we review the finite field restriction problem for cones and address new results on the conical restriction problems. In particular, we establish the restriction conjecture for the cone in four

Doowon Koh (고두원), Mattila-Sjölin type functions: A finite field model

Room B232 IBS (기초과학연구원)

Let $\mathbb{F}_q$ be a finite field of order $q$ which is a prime power. In the finite field setting, we say that a function $\phi\colon \mathbb{F}_q^d\times \mathbb{F}_q^d\to \mathbb{F}_q$ is a Mattila-Sjölin type function in $\mathbb{F}_q^d$ if for any $E\subset \mathbb{F}_q^d$ with $|E|\gg q^{\frac{d}{2}}$, we have $\phi(E, E)=\mathbb{F}_q$. The main purpose of this talk is to present

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.