• Tuan Tran, Anti-concentration phenomena

    Room B232 IBS (기초과학연구원)

    Let $X$ be a real random variable; a typical anti-concentration inequality asserts that (under certain assumptions) if an interval $I$ has small length, then $\mathbb{P}(X\in I)$ is small, regardless the location of $I$. Inequalities of this type have found powerful applications in many branches of mathematics. In this talk we will discuss several recent applications

  • Livestream

    2020 Combinatorics Workshop

    Zoom ID: 869 4632 6610 (ibsdimag)

    Combinatorics Workshop (조합론 학술대회) is the biggest annual conference in combinatorics in Korea. It was firstly held in 2004 by the Yonsei University BK21 Research Group. It has been advised by the committee of discrete mathematics of the Korean Mathematical Society since 2013. The aim of this workshop is to bring active researchers with different

  • Tuan Tran, Minimum saturated families of sets

    Room B232 IBS (기초과학연구원)

    A family $\mathcal F$ of subsets of is called s-saturated if it contains no s pairwise disjoint sets, and moreover, no set can be added to $\mathcal F$ while preserving this property. More than 40 years ago, Erdős and Kleitman conjectured that an s-saturated family of subsets of has size at least $(1 – 2^{-(s-1)})2^n$.

  • Extremal and Probabilistic Combinatorics (2021 KMS Spring Meeting)

    A special session "Extremal and Probabilistic Combinatorics" at the 2021 KMS Spring Meeting is organized by Tuan Tran. URL: https://www.kms.or.kr/meetings/spring2021/ Speakers and Schedule All talks are on April 30. Joonkyung Lee (이준경), University College London Majority dynamics on sparse random graphs Dong Yeap Kang (강동엽), Unversity of Birmingham The Erdős-Faber-Lovász conjecture and related results  Jinyoung

  • Tuan Tran, Exponential decay of intersection volume with applications on list-decodability and sphere-covering bounds

    Room B232 IBS (기초과학연구원)

    We give some natural sufficient conditions for balls in a metric space to have small intersection. Roughly speaking, this happens when the metric space is (i) expanding and (ii) well-spread, and (iii) certain random variable on the boundary of a ball has a small tail. As applications, we show that the volume of intersection of

  • Tuan Tran, Complexity of null dynamical systems

    Room B109 IBS (기초과학연구원)

    A theoretical dynamical system is a pair (X,T) where X is a compact metric space and T is a self homeomorphism of X. The topological entropy of a theoretical dynamical system (X,T), first introduced in 1965 by Adler, Konheim and McAndrew, is a nonnegative real number that measures the complexity of the system. Systems with positive