-
Ben Lund, Almost spanning distance trees in subsets of finite vector spaces
Ben Lund, Almost spanning distance trees in subsets of finite vector spaces
For $d\ge 2$ and an odd prime power $q$, let $\mathbb{F}_q^d$ be the $d$-dimensional vector space over the finite field $\mathbb{F}_q$. The distance between two points $(x_1,\ldots,x_d)$ and $(y_1,\ldots,y_d)$ is defined to be $\sum_{i=1}^d (x_i-y_i)^2$. An influential result of Iosevich and Rudnev is: if $E \subset \mathbb{F}_q^d$ is sufficiently large and $t \in \mathbb{F}_q$, then …