• Hyunwoo Lee (이현우), On perfect subdivision tilings

    Room B332 IBS (기초과학연구원)

    For a given graph $H$, we say that a graph $G$ has a perfect $H$-subdivision tiling if $G$ contains a collection of vertex-disjoint subdivisions of $H$ covering all vertices of $G.$ Let $\delta_{sub}(n, H)$ be the smallest integer $k$ such that any $n$-vertex graph $G$ with minimum degree at least $k$ has a perfect $H$-subdivision

  • Hyunwoo Lee (이현우), Towards a high-dimensional Dirac’s theorem

    Room B332 IBS (기초과학연구원)

    Dirac's theorem determines the sharp minimum degree threshold for graphs to contain perfect matchings and Hamiltonian cycles. There have been various attempts to generalize this theorem to hypergraphs with larger uniformity by considering hypergraph matchings and Hamiltonian cycles. We consider another natural generalization of the perfect matchings, Steiner triple systems. As a Steiner triple system

  • Hyunwoo Lee (이현우), Random matchings in linear hypergraphs

    Room B332 IBS (기초과학연구원)

    For a given hypergraph $H$ and a vertex $v\in V(H)$, consider a random matching $M$ chosen uniformly from the set of all matchings in $H.$ In $1995,$ Kahn conjectured that if $H$ is a $d$-regular linear $k$-uniform hypergraph, the probability that $M$ does not cover $v$ is $(1 + o_d(1))d^{-1/k}$ for all vertices $v\in V(H)$.

  • Hyunwoo Lee (이현우), Reconstructing hypergraph matching polynomials

    Room B332 IBS (기초과학연구원)

    By utilizing the recently developed hypergraph analogue of Godsil's identity by the second author, we prove that for all $n \geq k \geq 2$, one can reconstruct the matching polynomial of an $n$-vertex $k$-uniform hypergraph from the multiset of all induced sub-hypergraphs on $\lfloor \frac{k-1}{k}n \rfloor + 1$ vertices. This generalizes the well-known result of