Given a graph on the vertex set , the non-matching complex of , , is the family of subgraphs whose matching number is strictly less than . As an attempt to generalize the result by Linusson, Shareshian and Welker on the homotopy types of and to arbitrary graphs …
KSIAM 2020 Spring Conference will be held at IBS from May 8, 2020 to May 9, 2020. Organized by Korean Society for Industrial and Applied Mathematics. Organizing Committee Myungjoo Kang (Seoul National University) (chair) Ahn, Jaemyung (KAIST) Kwon, Hee-Dae (Inha University) Lee, Eun Jung (Yonsei University) Jang, Bongsoo (UNIST) Jung, Miyoun (Hankuk University of Foreign …
Inspired by a width invariant defined on permutations by Guillemot and Marx , we introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs, map graphs, -free unit -dimensional ball graphs, posets with antichains of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On all these classes …
Vatshelle (2012) introduced a width parameter called mim-width. It is based on the following cut function : for a vertex partition (A,B) of a graph, the complexity of this partition is computed by the size of a maximum induced matching of the bipartite subgraph induced by edges between A and B. This parameter naturally extends …
The famous Erdős-Rademacher problem asks for the smallest number of r-cliques in a graph with the given number of vertices and edges. Despite decades of active attempts, the asymptotic value of this extremal function for all r was determined only recently, by Reiher . Here we describe the asymptotic structure of all almost extremal graphs. …
The cut-rank of a set X of vertices in a graph G is defined as the rank of the X×(V(G)∖X) matrix over the binary field whose (i,j)-entry is 1 if the vertex i in X is adjacent to the vertex j in V(G)∖X and 0 otherwise. We introduce the graph parameter called the average cut-rank …