István Tomon, Configurations of boxes

Room B332 IBS (기초과학연구원)

Configurations of axis-parallel boxes in $\mathbb{R}^d$ are extensively studied in combinatorial geometry. Despite their perceived simplicity, there are many problems involving their structure that are not well understood. I will talk about a construction that shows that their structure might be more complicated than people conjectured.

Jie Han, Spanning trees in expanders

Zoom ID: 224 221 2686 (ibsecopro)

We consider the spanning tree embedding problem in dense graphs without bipartite holes and sparse graphs. In 2005, Alon, Krivelevich and Sudakov asked for determining the best possible spectral gap forcing an $(n,d,\lambda)$-graph to be $T(n, \Delta)$-universal. In this talk, we introduce our recent work on this conjecture.

James Davies, Two structural results for pivot-minors

Room B332 IBS (기초과학연구원)

Pivot-minors can be thought of as a dense analogue of graph minors. We shall discuss pivot-minors and two recent results for proper pivot-minor-closed classes of graphs. In particular, that for every graph H, the class of graphs containing no H-pivot-minor is 𝜒-bounded, and also satisfies the (strong) Erdős-Hajnal property.

MATRIX-IBS Workshop: Structural Graph Theory Downunder III

MATRIX, Australia

Website: https://www.matrix-inst.org.au/events/structural-graph-theory-downunder-iii/ Program Description:  This program, jointly organised by MATRIX and the Discrete Mathematics Group of the Korean Institute for Basic Science (IBS), builds on the “Structural Graph Theory Downunder” programs held at MATRIX in 2019 and 2022. In this short intensive workshop, mathematicians from across the globe will come together to work on open

Shin-ichiro Seki, On the extension of the Green-Tao theorem to number fields

Zoom ID: 897 6822 0619 (ibsecopro) [04/19 only]

In 2006, Tao established the Gaussian counterpart of the celebrated Green-Tao theorem on arithmetic progressions of primes. In this talk, I will explain the extension of Tao's theorem and the Green-Tao theorem to the case of general number fields. Our combinatorial tool is the relative hypergraph removal lemma by Conlon-Fox-Zhao. I will discuss the difficulties

Hyunwoo Lee (이현우), On perfect subdivision tilings

Room B332 IBS (기초과학연구원)

For a given graph $H$, we say that a graph $G$ has a perfect $H$-subdivision tiling if $G$ contains a collection of vertex-disjoint subdivisions of $H$ covering all vertices of $G.$ Let $\delta_{sub}(n, H)$ be the smallest integer $k$ such that any $n$-vertex graph $G$ with minimum degree at least $k$ has a perfect $H$-subdivision

Rob Morris, Ramsey theory: searching for order in chaos

Room 1501, Bldg. E6-1, KAIST

In many different areas of mathematics (such as number theory, discrete geometry, and combinatorics), one is often presented with a large "unstructured" object, and asked to find a smaller "structured" object inside it. One of the earliest and most influential examples of this phenomenon was the theorem of Ramsey, proved in 1930, which states that

Rob Morris, An exponential improvement for diagonal Ramsey

Room B332 IBS (기초과학연구원)

The Ramsey number $R(k)$ is the minimum n such that every red-blue colouring of the edges of the complete graph on n vertices contains a monochromatic copy of $K_k$. It has been known since the work of Erdős and Szekeres in 1935, and Erdős in 1947, that $2^{k/2} < R(k) < 4^k$, but in the

Jozef Skokan, Separating the edges of a graph by a linear number of paths

Room B332 IBS (기초과학연구원)

Recently, Letzter proved that any graph of order n contains a collection P of $O(n \log^*n)$ paths with the following property: for all distinct edges e and f there exists a path in P which contains e but not f. We improve this upper bound to 19n, thus answering a question of Katona and confirming

Maria Chudnovsky, Induced subgraphs and tree decompositions

Room 1501, Bldg. E6-1, KAIST

Tree decompositions are a powerful tool in both structural graph theory and graph algorithms. Many hard problems become tractable if the input graph is known to have a tree decomposition of bounded “width”. Exhibiting a particular kind of a tree decomposition is also a useful way to describe the structure of a graph. Tree decompositions

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.