• Donggyu Kim (김동규), Grassmann-Plücker functions for orthogonal matroids

    Room B332 IBS (기초과학연구원)

    We present a new cryptomorphic definition of orthogonal matroids with coefficients using Grassmann-Plücker functions. The equivalence is motivated by Cayley's identities expressing principal and almost-principal minors of a skew-symmetric matrix in terms of its pfaffians. As a corollary of the new cryptomorphism, we deduce that each component of the orthogonal Grassmannian is parameterized by certain

  • Yunbum Kook (국윤범), Sampling and volume computation

    Room B332 IBS (기초과학연구원)

    Since the development of the first randomized polynomial-time algorithm for volume computation by Dyer, Frieze, and Kannan in 1989, convex-body sampling has been a central problem at the intersection of algorithms, geometry, and probability. A major milestone came in 1997, when Kannan, Lovász, and Simonovits analyzed the Ball Walk and formulated the influential KLS conjecture.

  • Daniel Mock, A Simple for the Dominating Set Problem and More

    Room B332 IBS (기초과학연구원)

    In , Fabianski et. al. developed a simple, yet surprisingly powerful algorithmic framework to develop efficient parameterized graph algorithms. Notably they derive a simple parameterized algorithm for the dominating set problem on a variety of graph classes, including powers of nowhere dense classes and biclique-free classes. These results encompass a wide range of previously known

  • Daniel Dadush, TBA

    Room B332 IBS (기초과학연구원)