A subset $A\subseteq \mathbb Z$ of integers is free if for every two distinct subsets $B, B'\subseteq A$ we have \Pisier asked if for every subset $A\subseteq \mathbb Z$ of integers the following two statement are equivalent: (i) $A$ is a union of finitely many free sets. (ii) There exists $\epsilon>0$ such that every finite …
35 events found.
Virtual Discrete Math Colloquium
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
In 1977, Erdős and Hajnal made the conjecture that, for every graph $H$, there exists $c>0$ such that every $H$-free graph $G$ has a clique or stable set of size at least $|G|^c$; and they proved that this is true with $|G|^c$ replaced by $2^{c\sqrt{\log |G|}}$. There has no improvement on this result (for general … |
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
In 1993, Erdős, Hajnal, Simonovits, Sós and Szemerédi proposed to determine the value of Ramsey-Turán density $\rho(3,q)$ for $q\ge3$. Erdős et al. (1993) and Kim, Kim and Liu (2019) proposed two corresponding conjectures. However, we only know four values of this Ramsey-Turán density by Erdős et al. (1993). There is no progress on this classical … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|

