Finding the smallest integer $N=ES_d(n)$ such that in every configuration of $N$ points in $\mathbb{R}^d$ in general position, there exist $n$ points in convex position is one of the most classical problems in extremal combinatorics, known as the Erdős-Szekeres problem. In 1935, Erdős and Szekeres famously conjectured that $ES_2(n)=2^{n−2}+1$ holds, which was nearly settled by …
35 events found.
Virtual Discrete Math Colloquium
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Fix $r \ge 2$ and consider a family F of $C_{2r+1}$-free graphs, each having minimum degree linear in its number of vertices. Such a family is known to have bounded chromatic number; equivalently, each graph in F is homomorphic to a complete graph of bounded size. We disprove the analogous statement for homomorphic images that … |
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|

