Maria Chudnovsky, Anticomplete subgraphs of large treewidth

Room B332 IBS (기초과학연구원)

We will discuss recent progress on the topic of induced subgraphs and tree-decompositions. In particular this talk with focus on the proof of a conjecture of Hajebi that asserts that (if we exclude a few obvious counterexamples) for every integer t, every graph with large enough treewidth contains two anticomplete induced subgraphs each of treewidth

Semin Yoo (유세민), Paley-like quasi-random graphs arising from polynomials

Room B332 IBS (기초과학연구원)

We provide new constructions of families of quasi-random graphs that behave like Paley graphs but are neither Cayley graphs nor Cayley sum graphs. These graphs give a unified perspective of studying various graphs defined by polynomials over finite fields, such as Paley graphs, Paley sum graphs, and graphs associated with Diophantine tuples and their generalizations

Wonwoo Kang (강원우), Skein relations for punctured surfaces

Room B332 IBS (기초과학연구원)

Since the introduction of cluster algebras by Fomin and Zelevinsky in 2002, there has been significant interest in cluster algebras of surface type. These algebras are particularly noteworthy due to their ability to construct various combinatorial structures like snake graphs, T-paths, and posets, which are useful for proving key structural properties such as positivity or

Kisun Lee (이기선), Symmetric Tropical Rank 2 Matrices

Room B332 IBS (기초과학연구원)

Tropical geometry replaces usual addition and multiplication with tropical addition (the min) and tropical multiplication (the sum), which offers a polyhedral interpretation of algebraic variety. This talk aims to pitch the usefulness of tropical geometry in understanding classical algebraic geometry. As an example, we introduce the tropicalization of the variety of symmetric rank 2 matrices.

Hyunwoo Lee (이현우), Random matchings in linear hypergraphs

Room B332 IBS (기초과학연구원)

For a given hypergraph $H$ and a vertex $v\in V(H)$, consider a random matching $M$ chosen uniformly from the set of all matchings in $H.$ In $1995,$ Kahn conjectured that if $H$ is a $d$-regular linear $k$-uniform hypergraph, the probability that $M$ does not cover $v$ is $(1 + o_d(1))d^{-1/k}$ for all vertices $v\in V(H)$.

Daniel Král’, Matroid depth and width parameters

Room B332 IBS (기초과학연구원)

Depth and width parameters of graphs, e.g., tree-width, path-width and tree-depth, play a crucial role in algorithmic and structural graph theory. These notions are of fundamental importance in the theory of graph minors, fixed parameter complexity and the theory of sparsity. In this talk, we will survey structural and algorithmic results that concern width and

Peter Nelson, Formalizing matroid theory in a proof assistant

Room B332 IBS (기초과학연구원)

For the past few years, I've been working on formalizing proofs in matroid theory using the Lean proof assistant. This has led me to many interesting and unexpected places. I'll talk about what formalization looks like in practice from the perspective of a combinatorialist.

Dillon Mayhew, Monadic second-order definability for gain-graphic matroids

Room B332 IBS (기초과학연구원)

Every (finite) matroid consists of a (finite) set called the ground set, and a collection of distinguished subsets called the independent sets. A classic example arises when the ground set is a finite set of vectors from a vector space, and the independent subsets are exactly the subsets that are linearly independent. Any such matroid

Amadeus Reinald, Oriented trees in $O(k \sqrt{k})$-chromatic digraphs, a subquadratic bound for Burr’s conjecture

Room B332 IBS (기초과학연구원)

In 1980, Burr conjectured that every directed graph with chromatic number $2k-2$ contains any oriented tree of order $k$ as a subdigraph. Burr showed that chromatic number $(k-1)^2$ suffices, which was improved in 2013 to $\frac{k^2}{2} - \frac{k}{2} + 1$ by Addario-Berry et al. In this talk, we give the first subquadratic bound for Burr's

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.