Jakub Gajarský, Model Checking on Interpretations of Classes of Bounded Local Clique-Width
Zoom ID: 869 4632 6610 (ibsdimag)The first-order model checking problem for finite graphs asks, given a graph G and a first-order sentence
The first-order model checking problem for finite graphs asks, given a graph G and a first-order sentence
We introduce an odd coloring of a graph, which was introduced very recently, motivated by parity type colorings of graphs. A proper vertex coloring of graph
We prove that for every graph F with at least one edge there are graphs H of arbitrarily large chromatic number and the same clique number as F such that every F-free induced subgraph of H has chromatic number at most c=c(F). (Here a graph is F-free if it does not contain an induced copy …
In this talk, we introduce homomorphisms between binary matroids that generalize graph homomorphisms. For a binary matroid
The upper tail problem for subgraph counts in the Erdos-Renyi graph, introduced by Janson-Ruciński, has attracted a lot of attention. There is a class of Gibbs measures associated with subgraph counts, called exponential random graph model (ERGM). Despite its importance, lots of fundamental questions have remained unanswered owing to the lack of exact solvability. In …
Hadwiger's transversal theorem gives necessary and sufficient conditions for the existence of a line transversal to a family of pairwise disjoint convex sets in the plane. These conditions were subsequently generalized to hyperplane transversals in
We present a canonical way to decompose finite graphs into highly connected local parts. The decomposition depends only on an integer parameter whose choice sets the intended degree of locality. The global structure of the graph, as determined by the relative position of these parts, is described by a coarser model. This is a simpler …
For a set
Reconfiguration is about changing instances in small steps. For example, one can perform certain moves on a Rubik's cube, each of them changing its configuration a bit. In this case, in at most 20 steps, one can end up with the preferred result. One could construct a graph with as nodes the possible configurations of …
Transductions are a general formalism for expressing transformations of graphs (and more generally, of relational structures) in logic. We prove that a graph class C can be FO-transduced from a class of bounded-height trees (that is, has bounded shrubdepth) if, and only if, from C one cannot FO-transduce the class of all paths. This establishes …