O-joung Kwon (권오정), Classes of intersection digraphs with good algorithmic properties

Zoom ID: 875 9395 3555 (relay) [CLOSED]

An intersection digraph is a digraph where every vertex $v$ is represented by an ordered pair $(S_v, T_v)$ of sets such that there is an edge from $v$ to $w$ if and only if $S_v$ and $T_w$ intersect. An intersection digraph is reflexive if $S_v\cap T_v\neq \emptyset$ for every vertex $v$. Compared to well-known undirected

Hongseok Yang (양홍석), DAG-symmetries and Symmetry-Preserving Neural Networks

Room B232 IBS (기초과학연구원)

The preservation of symmetry is one of the key tools for designing data-efficient neural networks. A representative example is convolutional neural networks (CNNs); they preserve translation symmetries, and this symmetry preservation is often attributed to their success in real-world applications. In the machine-learning community, there is a growing body of work that explores a new

Jeong Ok Choi (최정옥), Invertibility of circulant matrices of arbitrary size

Room B232 IBS (기초과학연구원)

In this talk, we present sufficient conditions to guarantee the invertibility of rational circulant matrices with any given size. These sufficient conditions consist of linear combinations in terms of the entries in the first row with integer coefficients. Using these conditions we show the invertibility of some family of circulant matrices with particular forms of

Suil O (오수일), Eigenvalues and [a, b]-factors in regular graphs

Room B232 IBS (기초과학연구원)

For positive integers, $r \ge 3, h \ge 1,$ and $k \ge 1$, Bollobás, Saito, and Wormald proved some sufficient conditions for an $h$-edge-connected $r$-regular graph to have a k-factor in 1985. Lu gave an upper bound for the third-largest eigenvalue in a connected $r$-regular graph to have a $k$-factor in 2010. Gu found an upper bound

Jaehoon Kim (김재훈), $K_{r+1}$-saturated graphs with small spectral radius

Room B232 IBS (기초과학연구원)

For a graph $H$, a graph $G$ is $H$-saturated if $G$ does not contain $H$ as a subgraph but for any $e\in E(\overline G)$, $G+e$ contains $H$. In this note, we prove a sharp lower bound for the number of paths and walks on length 2 in $n$-vertex $K_{r+1}$-saturated graphs. We then use this bound to give a

Semin Yoo (유세민), Combinatorics of Euclidean spaces over finite fields

Room B232 IBS (기초과학연구원)

$q$-analogues of quantities in mathematics involve perturbations of classical quantities using the parameter $q$, and revert to the original quantities when $q$ goes $1$. An important example is the $q$-analogues of binomial coefficients, denoted by $\binom{n}{k}_{q}$, which give the number of $k$-dimensional subspaces in $\mathbb{F}_{q}^{n}$. When $q$ goes to $1$, this reverts to the binomial

Euiwoong Lee (이의웅), The Karger-Stein algorithm is optimal for k-cut

Room B232 IBS (기초과학연구원)

In the k-cut problem, we are given an edge-weighted graph and want to find the least-weight set of edges whose deletion breaks the graph into k connected components. It is easy to see that the elegant randomized contraction algorithm of Karger and Stein for global mincut (k=2) can be naturally extended for general k with

Duksang Lee (이덕상), Intertwining connectivities for vertex-minors and pivot-minors

Room B232 IBS (기초과학연구원)

We show that for pairs (Q,R) and (S,T) of disjoint subsets of vertices of a graph G, if G is sufficiently large, then there exists a vertex v in V(G)−(Q∪R∪S∪T) such that there are two ways to reduce G by a vertex-minor operation while preserving the connectivity between Q and R and the connectivity between S

Linda Cook, Two results on graphs with holes of restricted lengths

Room B232 IBS (기초과학연구원)

We call an induced cycle of length at least four a hole. The parity of a hole is the parity of its length. Forbidding holes of certain types in a graph has deep structural implications. In 2006, Chudnovksy, Seymour, Robertson, and Thomas famously proved that a graph is perfect if and only if it does not contain

Eun Jung Kim (김은정), A Constant-factor Approximation for Weighted Bond Cover

Room B232 IBS (기초과학연구원)

The Weighted $\mathcal F$-Vertex Deletion for a class $\mathcal F$ of graphs asks, given a weighted graph $G$, for a minimum weight vertex set $S$ such that $G-S\in\mathcal F$. The case when $\mathcal F$ is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for Weighted $\mathcal

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.